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SMALL SIGNAL ANALYSIS OF THE INDUCED
RESONANCE ELECTRON CYCLOTRON MASER

I. Introduction

Generation of intense radiation in the microwave regime utilizing

electron cyclotron interaction has been proposed independently by a

number of researchers in the late 1950's.1-4 Electrons gyrating in

resonance with the radiation field can experience a bunching in the

relative wave-particle phase through the dependence of the cyclotron

frequency on the relativistic mass. High amplification of the

radiation field, known as masing action, results for Doppler shifted

frequencies slightly above the electron cyclotron frequency. Electron

cyclotron masers, also called gyrotrons, 3 30 have demonstrated

efficient high power generation of electromagnetic waves at centimeter

wavelengths.

For many purposes it is of practical interest to develop high

pover generation capability at millimeter and submillimeter

wavelengths. Potential areas of application include advanced

accelerators, short wavelength radar, plasma heating in fusion

reactors and spectroscopy. The shortest wavelength for single mode

operation in a closed resonator is tied to the transverse dimension of

the cavity. For radiation wavelengths much shorter than the

transverse dimensions, a multimode excitation vii result from the

small frequency separation among nearby modes. The mode selectivity

is greatly improved by the use of an open resonator configuration, the

quasi-optical maser.
19'20

A new configuration has recently been proposed 29 .30 which

utilizes the benefits of the open resonators and at the same time

minimizes the detrimental effects of the injected electron beam energy

spread. The operating trequency in the induced resonance electron
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cyclotron (IREC) quasi-optical maser is upshifted by a factor y2

relative to the relativistic electron cyclotron frequency. It has

been shown that for operation at the optimum index of refraction the

efficiency is relatively insensitive to the beam energy spread and

the sensitivity to the effect of pitch angle spread can be minimized.

The index of refraction is adjustable by varying the angle between the

resonators (see Fig. (1)) and the guide field, and can be chosen to

minimize the effects of finite beam quality. Finally, by spatially

tapering the magnetic field the operating efficiency can be increased.

In this paper we limit ourselves to analyzing the small signal

efficiency characteristics of such a device. We include the effects

of the Gaussian profile for the radiation envelope considering a

uniform magnetic field for simplicity. Nonlinear effects and the role

of the magnetic field tapering are treated elsewhere.
3 0

The remainder of this paper is organized as follows. In Sec. II

we describe the field configuration and the equations of motion. In

Sec. III we derive the linear energy, power efficiency and start-up

current condition. In Sec. IV numerical results and conclusions are

presented.

II. Field and Particle Dynamics

The configuration for the induced resonance electron cyclotron

(IREC) quasi-optical maser is shown schematically in Fig. 1. The

interaction cavity is formed by two quasi-optical resonators

intersecting at an angle 2a where a is the angle relative to the

external magnetic field B in the z direction.

iiii iiHIIam Illll llB Ili 1" 0



The beam radius is much smaller than the Gaussian width ro (spot

size) for the radiation envelope. In the limit of small Larmor radius

p compared to the perpendicular vavelength kp << 1 ve can approximate

the vector potential in the interaction regime by

AT - AR(z) exp[i#(z,t)] + ie ) + cc
2 x y

+ AL(z) exp[iO(z,t)] 1 (ex - iey) + cc. (1)

Since ve are interested in the synchronous interaction of the gyrating

electrons vith the radiation, ve have kept only the forvard

propagating wave component *(z,t) - kzz - ot + %o . The amplitudes AR

and A L for the right- and left-handed polarized wave component,

respectively are given by

ARL(z) - AR,Lexp[ z2/L2 ],

,L A (cosa 1),

L - r /sina, (2)

vhere A and r0 are the amplitude and spot size for each individual

resonator beam.

We use the guiding center description for the particle orbits

x x+ p sinC, yg y - p cost,

Px Pgx + PIcos , py = Pgy + Pisin '  (3)

to obtain the nonlinear relativistic equations of motion. In this

representation (x g y ) and (p gx,p gy) denote the transverse coordinates

I I -I I gi.



and momentum of the particle's guiding center, p is the Larmor radius,

PL is the magnitude of the transverse momentum and is the momentum

space angle. We assume that x, y, Px' Py, p and p, are slowly

changing, on the spatial scale of a gyroperiod. An additional

condition for ignoring finite k effects is that the guiding center

shift in the x direction be small k1 &x << 1, valid for a << 1 where k

is k sina. Using the Lorentz force equation together with Maxwell's

equations and retaining only the right-hand polarized wave component

the nonlinear relativistic equations of motion are cast into the form

u11 - (y/cuz)-kzja(z)cos* + a'(z)sin*, (4a)

UZ I = - (u /Uz)[k a(z)cos* + a'(z)sin*], (4b)

- - (r&)/Cu) + (1/u )[((wy/cuz)-kz)a(z)sin* + a'(z)cos*], (4c)

The prime (') in Eqs. (4) signifies the d/dz derivative, u =

E/M c - /c, y - ( + U u2)1 /2 is the relativistic mass factor,-~ ~ Rlo vc 1u+ z)

a(z) IeIAR (z)/moc
2 is the normalized radiation amplitude, + # is

the relative phase between the radiation field and particle,

n - ckz /w - cosa is the refractive index associated with the radiation

field, Ao - w(l-nP ) - Qo/V] is the frequency mismatch term and

Q0- eIBo0/moc is the nonrelativistic electron cyclotron frequency. Using

Eqs. (4) the rate of change of y is given by

Y, - - w(u 1/cuz)a(z)cos. (5)

The frequency mismatch 6w and its dependence on the particle

energy through the relativistic correction y, provide the mechanism

for the masing action (phase bunching).
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III. Efficiency

One of the central issues concerning maser operation is the

efficiency of the configuration. Efficiency calculations have been

carried out for various configurations in the general categories of

the closed resonator gyrotron 5- 18'2 1- 2 8 or the open resonator quasi-

optical maser. 19'2 0  While it is generally recognized that nonlinear

saturation mechanisms are very important for the full power operation,

it is useful to carry out the small signal efficiency calculation in

order to compute the start-up current. Expressions for the small

amplitude efficiency, obtained in closed form, provide some guidelines

in selecting the optimum operating parameters.

Assuming steady state operation, with the number of particles

crossing the unit area per unit time n0vz being constant, the

efficiency can be defined by

= - Yo\- = -Y 1>_ Jd'pf 0(p) 'dz . (6)

In Eq. (6), the bracket < > signifies the average over the initial

distribution in phase space, the subscript ±- stands for the initial

and final values at z = ±- respectively and ay/az is a function of the

initial conditions y = y(z;po,Pzo, %). In the cold beam limit with

the initial distribution function given by fo(Pi,pz,*) = (no/2np1 )

1 (p, - P- ) pzo) the average reduces to an average over

0 0 + 0
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a. Small Signal Efficiency

We proceed to compute the small signal power efficiency by

evaluating the right-hand side of Eq. (6) using Eq. (5). A first

order expansion for the quantities u I= Ujo () + U (1) PY-Y(o) +

Y(), * *(o) + *G,() will suffice for a quadratic expression in the

wave amplitude a. The integrand on the right-hand side of Eq. (6) is

expanded using the linear solutions from Eqs. (4a)-(4c). The

evaluation of the final result is considerably simplified by

performing the phase space average over the angle *0 before the

spatial integration over z. Expanding the products of the

trigonometric terms inside the integral in Eq. (6) into sums and

averaging over *0leads to

d zwo 1+ da(z) I ''~~ sin A (z-z')
(fzO x zo u zo- -Cc

* (k(1 + -Lo _Cu j dza(z)f Odz' a(z')cosA (z-z')
u ~ zo

zo -Cm -M

2 2 u2 
mW- z z0){ U10 kz :'(0u B dazj dz' f dzlla(z")sinA (z-z")

u~ W~k - %)J f a(z) o 0( "]()
cu cu cu z

2 M z z
1 = . 0 0 , a(z) ca xp[-z2 2 ,whr 1 2r - Q ). -j/L)~jd~ d zI 7
o cu zo cu zv o

o 2
and ao = lei Ao/inc

o~ Ro
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We evaluate the remaining integrals in Eq. (14) and express

the final result in terms of the parameters w x = ( yo/cuzo)L, T

being the transit time through the interaction regime, and the

relative frequency mismatch Aw /w. We findo0

2 2
n a 1 + 0 2 )n1zo-

p 2 Yo(Yo1) 0

+ 1 o(1 - n2) + 1 + O -onzo (8)

2

0 &2r-

with U 1 0 /uzo, the initial pitch angle.

The efficiency is proportional to exp[- 1/2 &2 w2/ 21 where
0

exponent (&o/O) is equal to &A 0T, the advance in the relative phase

4*0 between the wave and the particle over the interaction regime.

For typical values of & >> 1 and Aw /w << 1 the expression in braces0

in Eq. (8) is simplified to

2 2 &2 2
o+ 2nO, +&0 ,0"o 2 0 _ o (9)
22 2

where &o = t2 (1-n 2) is independent of c. In (9) we have omitted the

small terms that originate from the gradient terms aa/az in the

equations of motion. Treating (9) as a quadratic form in 6w/co we find

the regime for positive efficiency, given by

2(1 _ (1 + 92 )n0 2 )( 2) < -o< 0.2(1-n2 )(n eo 07. -1 0)

7



The upper limit in &o /o is due to a finite n and results

2

from the negative contribution of the quadratic term (&o/o) that

overtakes the positive contribution of the linear term AO/o for small

angles sn2a< (2ne2 0 /0.1 2) (AW/W)

In order to determine the maximum efficiency within the

positive regime, we parameterize Eq.(8) as a function of x = & AW/W,

since the exponential is the main factor limiting efficiency. Setting

dvi/dx = 0, we obtain

c3x
3 

- c2 x
2 - C1x + co = 0 , (11)

with c1 = (1 + 30 2)0 cost- 1, c3 = eoocost and
2

c2 W co = (1/2) O1o&o sina. Observing that the terms proportional to

c and c3 can be omitted provided that co = c2 >> c3 - c 1 or

sinot >> -0o (12)

we can show that x = 1. In the special case x = 1, we obtain the

maximum efficiency

2 3
n 2 -1/2 1°so -

max T aoe (sina) (13)

The overall efficiency increases with decreasing a (increasing index

of refraction) provided that inequality Eq. (12) remains valid. For

very small o Eq. (13) fails and a solution of the cubic Eq. (11) is

necessary.

8



b. Start-up Current

We are in position now to calculate the start-up beam current

utilizing the power efficiency coefficient. Amplification of the

electromagnetic field energy will result if

tP > de (14)

where c is the total electromagnetic energy stored in both cavities

[U dV = 2V(2/c 2 )(A2/4n), V=Rr 2 LT, de/dt = (w/Q)c, 0 is the

quality factor for the cavity and Pb is the electron beam power.

The optimum power efficiency Vmax is given by Eq. (13). The

cavity Q is given by

0 l R f n (15)

where LIT is the effective resonator length and X the wavelength.

Combining Eqs. (13), (14), (15) and expressing A in terms of a from

Eq. (2) we obtain

2 c..~ 5___3___(YX (1 m2 5  
0 0 (y -1) 2sinctP b >  R (-Ref) 2 2 2 2(s (16)

0 4 E lei .i~o (1+cosa)

where Pb = IbVb' Ib is the current and Vb is voltage of the electron
beam. For typical parameters Vb = 0.25 x 106eV, X/r = 10 1-R ef

o# ef

0.1, Y = 1.5, aZo 0.64, O1o (/Ty 0)- and the optimum operation

angle a ~ 450, the start-up current is

I b 4.6 A.

9



IV. Conclusion and Summary

We have performed the small signal analysis for an oscillator

configuration capable of generating radiation in the millimeter and

the submillimeter regime. The threshold for the start-up current was

found to be well within the existing capabilities of today's long

pulse mildly relativistic beams. Our theoretical linear efficiency

results are plotted as solid lines in Figs. 2-4 against the numerical

results (dots) obtained by direct integration of the fully nonlinear

Eqs. (4) for small wave amplitude. Plots of the linear efficiency as

a function of the controlling parameter & 6w/w for constant radiation

amplitude a and constant spot size r0 are shown in Fig. 2, with each

curve corresponding to a different index of refraction n = cosm. The

maximum efficiency for all plots occurs at & A/w = 1 in agreement

with Eq. (13). Small signal efficiency increases with increasing

n = cosm roughly proportionally to the length of the interaction

regime L = r /sint. In Fig. 3, the optimum index of refraction 29-30

2
n = azo/( 1 1o ) , to minimize the effects of beam energy spread, is

held constant, and the interaction length L is changed by increasing

the width of the radiation envelope r0 . Figure 4 is a comparison of

the theoretical small signal efficiency with the numerically

calculated nonlinear efficiency as a function of wave amplitude a 00

The agreement is good for a0 < 3 x 10
-4 . Nonlinear saturation occurs

for a > 1 x 10- 3 . Obtaining the scaling of the efficiency in theo

nonlinear regime is not possible analytically. Numerical studies of

the high power performance, however, have demonstrated good nonlinear

efficiency.
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